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Homework 2 released next Monday 10/19 is due 11/2

Homework 3 is to complete an extension to Project 4

• Due at the same time as Project 4!

Homework 4 Released Monday 11/9, Due 11/23
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Implementing an Object System

Today's topics:
• What is a class?

• What is an instance?

• How do we create inheritance relationships?

• How do we write code for attribute look-up procedures?

3

Tools we'll use:
• Dispatch dictionaries

• Higher-order functions
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The OOP Abstraction Barrier (a.k.a. the Line)

Above the Line:

• Objects with local state & interact via message passing
• Objects are instantiated by classes, which are also objects
• Classes may inherit from other classes to share behavior
• Mechanics of objects are governed by "evaluation procedures"

4

Below the Line:

• Objects have mutable dictionaries of attributes
• Attribute look-up for instances is a function
• Attribute look-up for classes is another function
• Object instantiation is another function

THE LINE
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Implementing the Object Abstraction

Fundamental OOP concepts:
• Object instantiation and initialization

• Attribute look-up and assignment

• Method invocation

• Inheritance

5

Not-so-fundamental issues (that we'll skip):
• Dot expression syntax

• Multiple inheritance (on your homework)

• Introspection (e.g., what class does this object have?)
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Dispatch dictionary with messages 'get' and 'set'

Attributes stored in a local dictionary "attributes"

6

    def make_instance(cls): 
        """Return a new object instance.""" 

        def get_value(name): 
            if name in attributes: 
                return attributes[name] 
            else: 
                value = cls['get'](name) 
                return bind_method(value, instance) 

        def set_value(name, value): 
            attributes[name] = value 

        attributes = {} 
        instance = {'get': get_value, 'set': set_value} 
        return instance 

The class of the instance

Look up the name 
in the class

Match name against 
instance attributes

Assignment always 
creates/modifies 

instance attributes

(Demo)
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Classes

Dispatch dictionaries with messages 'get', 'set', and 'new'

8

    def make_class(attributes={}, base_class=None): 
        """Return a new class.""" 

        def get_value(name): 
            if name in attributes: 
                return attributes[name] 
            elif base_class is not None: 
                return base_class['get'](name) 

        def set_value(name, value): 
            attributes[name] = value 

        def new(*args): 
            return init_instance(cls, *args) 

        cls = {'get': get_value, 'set': set_value, 'new': new} 
        return cls 

The class attribute 
look-up procedure

Common dispatch 
dictionary pattern

(Demo)
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First makes a new instance, then invokes the __init__ method

9

    def make_class(attributes={}, base_class=None): 
        ... 
        def new(*args): 
            return init_instance(cls, *args) 
        ...

    def init_instance(cls, *args):

        """Return a new instance of cls, initialized with args."""

        instance = make_instance(cls)

        init = cls['get']('__init__')

        if init is not None:

            init(instance, *args)

        return instance

The constructor name 
is fixed here

Dispatch dictionary
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Example: Using the Account Class

The Account class is instantiated and stored, then messaged

11

>>> Account = make_account_class()
>>> jim_acct = Account['new']('Jim')
>>> jim_acct['get']('holder')
'Jim'
>>> jim_acct['get']('interest')
0.02
>>> jim_acct['get']('deposit')(20)
20
>>> jim_acct['get']('withdraw')(5)
15

How can we also use getattr and setattr style syntax?
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>>> Account = make_account_class()

>>> jim_acct = Account['new']('Jim')
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(Demo)
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Some "magic" names, __<name>__, require special handling 

An object has an "attribute" called __dict__ that is a 
dictionary of its user-defined instance attributes
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(Demo)

In Python, classes have classes too 

The equivalent of init_instance can be customized (metaclass)


