
61A Extra Lecture 6

Announcements

2

Announcements

Homework 1 due Monday 10/12 (today)

2

Announcements

Homework 1 due Monday 10/12 (today)

Homework 2 released next Monday 10/19 is due 11/2

2

Announcements

Homework 1 due Monday 10/12 (today)

Homework 2 released next Monday 10/19 is due 11/2

Homework 3 is to complete an extension to Project 4

2

Announcements

Homework 1 due Monday 10/12 (today)

Homework 2 released next Monday 10/19 is due 11/2

Homework 3 is to complete an extension to Project 4

• Due at the same time as Project 4!

2

Announcements

Homework 1 due Monday 10/12 (today)

Homework 2 released next Monday 10/19 is due 11/2

Homework 3 is to complete an extension to Project 4

• Due at the same time as Project 4!

Homework 4 Released Monday 11/9, Due 11/23

2

Implementing an Object System

3

Implementing an Object System

Today's topics:

3

Implementing an Object System

Today's topics:
• What is a class?

3

Implementing an Object System

Today's topics:
• What is a class?

• What is an instance?

3

Implementing an Object System

Today's topics:
• What is a class?

• What is an instance?

• How do we create inheritance relationships?

3

Implementing an Object System

Today's topics:
• What is a class?

• What is an instance?

• How do we create inheritance relationships?

• How do we write code for attribute look-up procedures?

3

Implementing an Object System

Today's topics:
• What is a class?

• What is an instance?

• How do we create inheritance relationships?

• How do we write code for attribute look-up procedures?

3

Tools we'll use:

Implementing an Object System

Today's topics:
• What is a class?

• What is an instance?

• How do we create inheritance relationships?

• How do we write code for attribute look-up procedures?

3

Tools we'll use:
• Dispatch dictionaries

Implementing an Object System

Today's topics:
• What is a class?

• What is an instance?

• How do we create inheritance relationships?

• How do we write code for attribute look-up procedures?

3

Tools we'll use:
• Dispatch dictionaries

• Higher-order functions

The OOP Abstraction Barrier (a.k.a. the Line)

4

The OOP Abstraction Barrier (a.k.a. the Line)

4

THE LINE

The OOP Abstraction Barrier (a.k.a. the Line)

Above the Line:

4

THE LINE

The OOP Abstraction Barrier (a.k.a. the Line)

Above the Line:

• Objects with local state & interact via message passing

4

THE LINE

The OOP Abstraction Barrier (a.k.a. the Line)

Above the Line:

• Objects with local state & interact via message passing
• Objects are instantiated by classes, which are also objects

4

THE LINE

The OOP Abstraction Barrier (a.k.a. the Line)

Above the Line:

• Objects with local state & interact via message passing
• Objects are instantiated by classes, which are also objects
• Classes may inherit from other classes to share behavior

4

THE LINE

The OOP Abstraction Barrier (a.k.a. the Line)

Above the Line:

• Objects with local state & interact via message passing
• Objects are instantiated by classes, which are also objects
• Classes may inherit from other classes to share behavior
• Mechanics of objects are governed by "evaluation procedures"

4

THE LINE

The OOP Abstraction Barrier (a.k.a. the Line)

Above the Line:

• Objects with local state & interact via message passing
• Objects are instantiated by classes, which are also objects
• Classes may inherit from other classes to share behavior
• Mechanics of objects are governed by "evaluation procedures"

4

Below the Line:

THE LINE

The OOP Abstraction Barrier (a.k.a. the Line)

Above the Line:

• Objects with local state & interact via message passing
• Objects are instantiated by classes, which are also objects
• Classes may inherit from other classes to share behavior
• Mechanics of objects are governed by "evaluation procedures"

4

Below the Line:

• Objects have mutable dictionaries of attributes

THE LINE

The OOP Abstraction Barrier (a.k.a. the Line)

Above the Line:

• Objects with local state & interact via message passing
• Objects are instantiated by classes, which are also objects
• Classes may inherit from other classes to share behavior
• Mechanics of objects are governed by "evaluation procedures"

4

Below the Line:

• Objects have mutable dictionaries of attributes
• Attribute look-up for instances is a function

THE LINE

The OOP Abstraction Barrier (a.k.a. the Line)

Above the Line:

• Objects with local state & interact via message passing
• Objects are instantiated by classes, which are also objects
• Classes may inherit from other classes to share behavior
• Mechanics of objects are governed by "evaluation procedures"

4

Below the Line:

• Objects have mutable dictionaries of attributes
• Attribute look-up for instances is a function
• Attribute look-up for classes is another function

THE LINE

The OOP Abstraction Barrier (a.k.a. the Line)

Above the Line:

• Objects with local state & interact via message passing
• Objects are instantiated by classes, which are also objects
• Classes may inherit from other classes to share behavior
• Mechanics of objects are governed by "evaluation procedures"

4

Below the Line:

• Objects have mutable dictionaries of attributes
• Attribute look-up for instances is a function
• Attribute look-up for classes is another function
• Object instantiation is another function

THE LINE

Implementing the Object Abstraction

5

Implementing the Object Abstraction

Fundamental OOP concepts:

5

Implementing the Object Abstraction

Fundamental OOP concepts:
• Object instantiation and initialization

5

Implementing the Object Abstraction

Fundamental OOP concepts:
• Object instantiation and initialization

• Attribute look-up and assignment

5

Implementing the Object Abstraction

Fundamental OOP concepts:
• Object instantiation and initialization

• Attribute look-up and assignment

• Method invocation

5

Implementing the Object Abstraction

Fundamental OOP concepts:
• Object instantiation and initialization

• Attribute look-up and assignment

• Method invocation

• Inheritance

5

Implementing the Object Abstraction

Fundamental OOP concepts:
• Object instantiation and initialization

• Attribute look-up and assignment

• Method invocation

• Inheritance

5

Not-so-fundamental issues (that we'll skip):

Implementing the Object Abstraction

Fundamental OOP concepts:
• Object instantiation and initialization

• Attribute look-up and assignment

• Method invocation

• Inheritance

5

Not-so-fundamental issues (that we'll skip):
• Dot expression syntax

Implementing the Object Abstraction

Fundamental OOP concepts:
• Object instantiation and initialization

• Attribute look-up and assignment

• Method invocation

• Inheritance

5

Not-so-fundamental issues (that we'll skip):
• Dot expression syntax

• Multiple inheritance (on your homework)

Implementing the Object Abstraction

Fundamental OOP concepts:
• Object instantiation and initialization

• Attribute look-up and assignment

• Method invocation

• Inheritance

5

Not-so-fundamental issues (that we'll skip):
• Dot expression syntax

• Multiple inheritance (on your homework)

• Introspection (e.g., what class does this object have?)

Instances

6

Instances

Dispatch dictionary with messages 'get' and 'set'

6

Instances

Dispatch dictionary with messages 'get' and 'set'

Attributes stored in a local dictionary "attributes"

6

Instances

Dispatch dictionary with messages 'get' and 'set'

Attributes stored in a local dictionary "attributes"

6(Demo)

Instances

Dispatch dictionary with messages 'get' and 'set'

Attributes stored in a local dictionary "attributes"

6

 def make_instance(cls):
 """Return a new object instance."""

 def get_value(name):
 if name in attributes:
 return attributes[name]
 else:
 value = cls['get'](name)
 return bind_method(value, instance)

 def set_value(name, value):
 attributes[name] = value

 attributes = {}
 instance = {'get': get_value, 'set': set_value}
 return instance

(Demo)

Instances

Dispatch dictionary with messages 'get' and 'set'

Attributes stored in a local dictionary "attributes"

6

 def make_instance(cls):
 """Return a new object instance."""

 def get_value(name):
 if name in attributes:
 return attributes[name]
 else:
 value = cls['get'](name)
 return bind_method(value, instance)

 def set_value(name, value):
 attributes[name] = value

 attributes = {}
 instance = {'get': get_value, 'set': set_value}
 return instance

The class of the instance

(Demo)

Instances

Dispatch dictionary with messages 'get' and 'set'

Attributes stored in a local dictionary "attributes"

6

 def make_instance(cls):
 """Return a new object instance."""

 def get_value(name):
 if name in attributes:
 return attributes[name]
 else:
 value = cls['get'](name)
 return bind_method(value, instance)

 def set_value(name, value):
 attributes[name] = value

 attributes = {}
 instance = {'get': get_value, 'set': set_value}
 return instance

The class of the instance

Match name against
instance attributes

(Demo)

Instances

Dispatch dictionary with messages 'get' and 'set'

Attributes stored in a local dictionary "attributes"

6

 def make_instance(cls):
 """Return a new object instance."""

 def get_value(name):
 if name in attributes:
 return attributes[name]
 else:
 value = cls['get'](name)
 return bind_method(value, instance)

 def set_value(name, value):
 attributes[name] = value

 attributes = {}
 instance = {'get': get_value, 'set': set_value}
 return instance

The class of the instance

Look up the name
in the class

Match name against
instance attributes

(Demo)

Instances

Dispatch dictionary with messages 'get' and 'set'

Attributes stored in a local dictionary "attributes"

6

 def make_instance(cls):
 """Return a new object instance."""

 def get_value(name):
 if name in attributes:
 return attributes[name]
 else:
 value = cls['get'](name)
 return bind_method(value, instance)

 def set_value(name, value):
 attributes[name] = value

 attributes = {}
 instance = {'get': get_value, 'set': set_value}
 return instance

The class of the instance

Look up the name
in the class

Match name against
instance attributes

Assignment always
creates/modifies

instance attributes

(Demo)

Bound Methods

7

Bound Methods

If looking up a name returns a class attribute value that is a
function, getattr returns a bound method

7

Bound Methods

If looking up a name returns a class attribute value that is a
function, getattr returns a bound method

7

 def make_instance(cls):
 def get_value(name):
 if name in attributes:
 return attributes[name]
 else:
 value = cls['get'](name)
 return bind_method(value, instance)
 ...

Bound Methods

If looking up a name returns a class attribute value that is a
function, getattr returns a bound method

7

 def make_instance(cls):
 def get_value(name):
 if name in attributes:
 return attributes[name]
 else:
 value = cls['get'](name)
 return bind_method(value, instance)
 ...

Bound Methods

If looking up a name returns a class attribute value that is a
function, getattr returns a bound method

7

 def make_instance(cls):
 def get_value(name):
 if name in attributes:
 return attributes[name]
 else:
 value = cls['get'](name)
 return bind_method(value, instance)
 ...

(Demo)

Classes

8

Classes

Dispatch dictionaries with messages 'get', 'set', and 'new'

8

Classes

Dispatch dictionaries with messages 'get', 'set', and 'new'

8(Demo)

Classes

Dispatch dictionaries with messages 'get', 'set', and 'new'

8

 def make_class(attributes={}, base_class=None):
 """Return a new class."""

 def get_value(name):
 if name in attributes:
 return attributes[name]
 elif base_class is not None:
 return base_class['get'](name)

 def set_value(name, value):
 attributes[name] = value

 def new(*args):
 return init_instance(cls, *args)

 cls = {'get': get_value, 'set': set_value, 'new': new}
 return cls

(Demo)

Classes

Dispatch dictionaries with messages 'get', 'set', and 'new'

8

 def make_class(attributes={}, base_class=None):
 """Return a new class."""

 def get_value(name):
 if name in attributes:
 return attributes[name]
 elif base_class is not None:
 return base_class['get'](name)

 def set_value(name, value):
 attributes[name] = value

 def new(*args):
 return init_instance(cls, *args)

 cls = {'get': get_value, 'set': set_value, 'new': new}
 return cls

The class attribute
look-up procedure

(Demo)

Classes

Dispatch dictionaries with messages 'get', 'set', and 'new'

8

 def make_class(attributes={}, base_class=None):
 """Return a new class."""

 def get_value(name):
 if name in attributes:
 return attributes[name]
 elif base_class is not None:
 return base_class['get'](name)

 def set_value(name, value):
 attributes[name] = value

 def new(*args):
 return init_instance(cls, *args)

 cls = {'get': get_value, 'set': set_value, 'new': new}
 return cls

The class attribute
look-up procedure

(Demo)

Classes

Dispatch dictionaries with messages 'get', 'set', and 'new'

8

 def make_class(attributes={}, base_class=None):
 """Return a new class."""

 def get_value(name):
 if name in attributes:
 return attributes[name]
 elif base_class is not None:
 return base_class['get'](name)

 def set_value(name, value):
 attributes[name] = value

 def new(*args):
 return init_instance(cls, *args)

 cls = {'get': get_value, 'set': set_value, 'new': new}
 return cls

The class attribute
look-up procedure

Common dispatch
dictionary pattern

(Demo)

Instantiation and Initialization

9

Instantiation and Initialization

First makes a new instance, then invokes the __init__ method

9

Instantiation and Initialization

First makes a new instance, then invokes the __init__ method

9

 def make_class(attributes={}, base_class=None):
 ...
 def new(*args):
 return init_instance(cls, *args)
 ...

Instantiation and Initialization

First makes a new instance, then invokes the __init__ method

9

 def make_class(attributes={}, base_class=None):
 ...
 def new(*args):
 return init_instance(cls, *args)
 ...

 def init_instance(cls, *args):

Instantiation and Initialization

First makes a new instance, then invokes the __init__ method

9

 def make_class(attributes={}, base_class=None):
 ...
 def new(*args):
 return init_instance(cls, *args)
 ...

 def init_instance(cls, *args):

 """Return a new instance of cls, initialized with args."""

Instantiation and Initialization

First makes a new instance, then invokes the __init__ method

9

 def make_class(attributes={}, base_class=None):
 ...
 def new(*args):
 return init_instance(cls, *args)
 ...

 def init_instance(cls, *args):

 """Return a new instance of cls, initialized with args."""

 instance = make_instance(cls)

Instantiation and Initialization

First makes a new instance, then invokes the __init__ method

9

 def make_class(attributes={}, base_class=None):
 ...
 def new(*args):
 return init_instance(cls, *args)
 ...

 def init_instance(cls, *args):

 """Return a new instance of cls, initialized with args."""

 instance = make_instance(cls)
Dispatch dictionary

Instantiation and Initialization

First makes a new instance, then invokes the __init__ method

9

 def make_class(attributes={}, base_class=None):
 ...
 def new(*args):
 return init_instance(cls, *args)
 ...

 def init_instance(cls, *args):

 """Return a new instance of cls, initialized with args."""

 instance = make_instance(cls)

 init = cls['get']('__init__')
Dispatch dictionary

Instantiation and Initialization

First makes a new instance, then invokes the __init__ method

9

 def make_class(attributes={}, base_class=None):
 ...
 def new(*args):
 return init_instance(cls, *args)
 ...

 def init_instance(cls, *args):

 """Return a new instance of cls, initialized with args."""

 instance = make_instance(cls)

 init = cls['get']('__init__')

The constructor name
is fixed here

Dispatch dictionary

Instantiation and Initialization

First makes a new instance, then invokes the __init__ method

9

 def make_class(attributes={}, base_class=None):
 ...
 def new(*args):
 return init_instance(cls, *args)
 ...

 def init_instance(cls, *args):

 """Return a new instance of cls, initialized with args."""

 instance = make_instance(cls)

 init = cls['get']('__init__')

 if init is not None:
The constructor name

is fixed here

Dispatch dictionary

Instantiation and Initialization

First makes a new instance, then invokes the __init__ method

9

 def make_class(attributes={}, base_class=None):
 ...
 def new(*args):
 return init_instance(cls, *args)
 ...

 def init_instance(cls, *args):

 """Return a new instance of cls, initialized with args."""

 instance = make_instance(cls)

 init = cls['get']('__init__')

 if init is not None:

 init(instance, *args)
The constructor name

is fixed here

Dispatch dictionary

Instantiation and Initialization

First makes a new instance, then invokes the __init__ method

9

 def make_class(attributes={}, base_class=None):
 ...
 def new(*args):
 return init_instance(cls, *args)
 ...

 def init_instance(cls, *args):

 """Return a new instance of cls, initialized with args."""

 instance = make_instance(cls)

 init = cls['get']('__init__')

 if init is not None:

 init(instance, *args)

 return instance

The constructor name
is fixed here

Dispatch dictionary

Example: Defining an Account Class

10

Example: Defining an Account Class

10

(Demo)

Example: Defining an Account Class

10

def make_account_class():

 interest = 0.02

 def __init__(self, account_holder):
 self['set']('holder', account_holder)
 self['set']('balance', 0)

 def deposit(self, amount):
 new_balance = self['get']('balance') + amount
 self['set']('balance', new_balance)
 return self['get']('balance')

 def withdraw(self, amount):
 balance = self['get']('balance')
 if amount > balance:
 return 'Insufficient funds'
 self['set']('balance', balance - amount)
 return self['get']('balance')

 return make_class(locals())

Account = make_account_class()

(Demo)

Example: Defining an Account Class

10

def make_account_class():

 interest = 0.02

 def __init__(self, account_holder):
 self['set']('holder', account_holder)
 self['set']('balance', 0)

 def deposit(self, amount):
 new_balance = self['get']('balance') + amount
 self['set']('balance', new_balance)
 return self['get']('balance')

 def withdraw(self, amount):
 balance = self['get']('balance')
 if amount > balance:
 return 'Insufficient funds'
 self['set']('balance', balance - amount)
 return self['get']('balance')

 return make_class(locals())

Account = make_account_class()

(Demo)

Example: Using the Account Class

The Account class is instantiated and stored, then messaged

11

Example: Using the Account Class

The Account class is instantiated and stored, then messaged

11

>>> Account = make_account_class()

Example: Using the Account Class

The Account class is instantiated and stored, then messaged

11

>>> Account = make_account_class()
>>> jim_acct = Account['new']('Jim')

Example: Using the Account Class

The Account class is instantiated and stored, then messaged

11

>>> Account = make_account_class()
>>> jim_acct = Account['new']('Jim')
>>> jim_acct['get']('holder')
'Jim'

Example: Using the Account Class

The Account class is instantiated and stored, then messaged

11

>>> Account = make_account_class()
>>> jim_acct = Account['new']('Jim')
>>> jim_acct['get']('holder')
'Jim'
>>> jim_acct['get']('interest')
0.02

Example: Using the Account Class

The Account class is instantiated and stored, then messaged

11

>>> Account = make_account_class()
>>> jim_acct = Account['new']('Jim')
>>> jim_acct['get']('holder')
'Jim'
>>> jim_acct['get']('interest')
0.02
>>> jim_acct['get']('deposit')(20)
20

Example: Using the Account Class

The Account class is instantiated and stored, then messaged

11

>>> Account = make_account_class()
>>> jim_acct = Account['new']('Jim')
>>> jim_acct['get']('holder')
'Jim'
>>> jim_acct['get']('interest')
0.02
>>> jim_acct['get']('deposit')(20)
20
>>> jim_acct['get']('withdraw')(5)
15

Example: Using the Account Class

The Account class is instantiated and stored, then messaged

11

>>> Account = make_account_class()
>>> jim_acct = Account['new']('Jim')
>>> jim_acct['get']('holder')
'Jim'
>>> jim_acct['get']('interest')
0.02
>>> jim_acct['get']('deposit')(20)
20
>>> jim_acct['get']('withdraw')(5)
15

How can we also use getattr and setattr style syntax?

Class and Instance Attributes

Instance attributes and class attributes can share names

12

Class and Instance Attributes

Instance attributes and class attributes can share names

12

>>> Account = make_account_class()

Class and Instance Attributes

Instance attributes and class attributes can share names

12

>>> Account = make_account_class()

>>> jim_acct = Account['new']('Jim')

Class and Instance Attributes

Instance attributes and class attributes can share names

12

>>> Account = make_account_class()

>>> jim_acct = Account['new']('Jim')

>>> jim_acct['set']('interest', 0.08)

Class and Instance Attributes

Instance attributes and class attributes can share names

12

>>> Account = make_account_class()

>>> jim_acct = Account['new']('Jim')

>>> jim_acct['set']('interest', 0.08)

>>> Account['get']('interest')

0.02

Class and Instance Attributes

Instance attributes and class attributes can share names

12

>>> Account = make_account_class()

>>> jim_acct = Account['new']('Jim')

>>> jim_acct['set']('interest', 0.08)

>>> Account['get']('interest')

0.02

(Demo)

Example: Using Inheritance

CheckingAccount is a special case of Account

13

Example: Using Inheritance

CheckingAccount is a special case of Account

13

(Demo)

Example: Using Inheritance

CheckingAccount is a special case of Account

13

def make_checking_account_class():

 interest = 0.01
 withdraw_fee = 1

 def withdraw(self, amount):
 fee = self['get']('withdraw_fee')
 return Account['get']('withdraw')(self, amount + fee)

 return make_class(locals(), Account)

CheckingAccount = make_checking_account_class()

(Demo)

Example: Using Inheritance

CheckingAccount is a special case of Account

13

def make_checking_account_class():

 interest = 0.01
 withdraw_fee = 1

 def withdraw(self, amount):
 fee = self['get']('withdraw_fee')
 return Account['get']('withdraw')(self, amount + fee)

 return make_class(locals(), Account)

CheckingAccount = make_checking_account_class()

(Demo)

Relationship to the Python Object System

Object attributes are stored as dictionaries

Some "magic" names, __<name>__, require special handling

An object has an "attribute" called __dict__ that is a
dictionary of its user-defined instance attributes

14

(Demo)

Relationship to the Python Object System

Object attributes are stored as dictionaries

Some "magic" names, __<name>__, require special handling

An object has an "attribute" called __dict__ that is a
dictionary of its user-defined instance attributes

14

(Demo)

In Python, classes have classes too

The equivalent of init_instance can be customized (metaclass)

